Friday, July 09, 2004

Racing scooter

Hmm.kenapa eh kenapa....extrem modif scooter di Indonesia ini masih langka ya......gw punya gambar yg moga-moga aja bisa menggugah niat usil saudara2 kita yg seneng ma modif......

Sunday, June 20, 2004

Ttg Turbocharger

Mengenal dan merawat mesin turbo


(05/09/2002) - Turbocharger menjadi alternatif terbaik untuk meningkatkan daya kuda yang bisa dihasilkan mesin, tanpa harus menambah bobot mobil. Selain itu, ukurannya yang kompak dan proses pemasangannya yang sederhana, membuat turbo juga populer di aftermarket.



Perangkat ini banyak digunakan mesin diesel maupun mobil performance. Di Indonesia, banyak model yang menawarkan perangkat ini, seperti Isuzu Panther, Ford Ranger, Mitsubishi L200 Strada dan Kia Carnival.

Prinsip kerja turbo, mengkompresi udara ke mesin untuk meningkatkan jumlah molekul oksigen yang masuk ke silinder. Tingginya molekul oksigen yang masuk mendorong tambahan pasokan BBM. Dengan demikian, lebih banyak BBM yang dibakar, hingga daya yang diproduksi meningkat.

Tekanan udara yang dikompresi bisa meningkat hingga 8 psi (pounds per square inch) dibandingkan tekanan normal. Bila tekanan normal di permukaan laut sebesar 14.7 psi, maka udara yang dikompresi mempunyai tekanan hingga 50% lebih tinggi. Namun tidak berarti power yang dihasilkan meningkat 50%. Karena ada sebagian daya yang hilang/inefisiensi. Peningkatan daya optimal turbo bisa 30 – 40 persen lebih banyak.

Untuk melakukan kompresi, turbo memanfaatkan aliran gas buang dari mesin untuk memutar turbin, yang meneruskan putaran ke kompresor udara. Turbin ini bisa berputar hingga 150,000 putaran tiap menit (rpm) atau 30 kali putaran mesin mobil pada umumnya. Temperatur perangkat ini juga bisa melesat naik, ketika bersentuhan dengan gas buang. Dengan kondisi kerja seperti itu, turbo membutuhkan material berkualitas tinggi dengan pengerjaan super presisi.

Perangkat turbo dipasang pada exhaust manifold, sedangkan kompresor udara diletakkan diantara air filter dan intake manifold. Udara yang dikompresi, suhunya naik dan ketika suhu naik, udara akan memuai lagi. Akibatnya, meskipun tekanan udara yang masuk ruang bakar tinggi, tapi jumlah molekul udara yang dibutuhkan untuk pembakaran menjadi berkurang. Oleh karena itu, maka ditambahkan perangkat intercooler yang berfungsi menurunkan suhu udara kompresi.

Di sisi lain, penggunaan turbo juga menimbulkan kerugian pada mesin. Pemasangan turbin membuat aliran gas buang menjadi tidak lancar. Mesin juga harus mengeluarkan tenaga ekstra untuk melawan tekanan balik dari saluran gas buang.

Selain itu gejala knocking/nglitik juga sering ditemui. Ini disebabkan karena udara kompresi yang bersuhu tinggi ketika masuk ke ruang bakar yang bertekanan tinggi, bisa memicu pembakaran sebelum busi memercikkan api. Oleh karena itu, mobil dengan perangkat turbo seringkali membutuhkan BBM dengan oktan tinggi, guna menghindari gejala knocking. Kini mesin-mesin modern yang dilengkapi turbo, sudah dilengkapi semacam adjuster yang bisa menyesuaikan kompresi udara secara presisi sesuai kebutuhan mesin.

Problem lain yang sering ditemui mobil dengan perangkat turbo adalah turbo lag. Kondisi ini terjadi karena turbo tidak bisa seketika menghadirkan tambahan daya saat gas ditekan (turbo baru bekerja pada putaran tertentu). Baru beberapa detik kemudian tambahan daya bekerja, ditandai dengan melonjaknya mobil ke depan.

Cara untuk meminimalkan efek ini adalah memangkas bobot komponen yang berputar. Ini membuat turbin dan kompresor lebih mudah berakselerasi untuk melakukan kompresi. Cara lainnya, dengan menggunakan material baru seperti ceramic turbine blades. Material baru ini lebih ringan dari baja, hingga lebih mudah berputar Efek ini nyaris tidak terasa pada mesin dengan teknologi turbo modern.

Kebanyakan turbocharger memiliki wastegate, semacam katup pengaman yang memungkinkan gas buang menerobos keluar tanpa melewati turbin. Katup ini bekerja berdasarkan sensor tekanan. Bila tekanan udara terlalu tinggi, berarti turbin berputar terlalu cepat, maka exhaust gas dibuang lewat wastegate, hingga rotasi turbin melambat.

Karena turbo bekerja pada kondisi temperatur, kecepatan dan tekanan tinggi, maka peforma optimum bisa didapat jika alat ini dioperasikan dan dirawat dengan benar. Kerusakan yang sering terjadi biasanya akibat buruknya lubrikasi, atau masuknya partikel abrasif pada oli. Sebab lain adalah lolosnya partikel berukuran besar pada aliran udara yang tersedot masuk. Juga benda-benda yang tersembur keluar dari exhaust, seperti kerak karbon, serpihan komponen mesin, dll berperan menimbulkan kerusakan.

Agar turbo bekerja sempurna, maka;



Turbo harus di service sesuai rentang waktu yang direkomendasikan.

Gunakan selalu oli yang direkomendasi produsen mobil

Pilih bengkel yang benar-benar ahli dalam perawatan turbo

Periksa setiap kebocoran oli, suara-suara ‘aneh’ dan getaran yang tidak wajar.

Power kurang, suara keras, asap biru atau hitam, kemungkinan mengindikasikan masalah pada mesin, bukan turbo

Panaskan mesin beberapa saat, tunggu temperatur oli mesin mencapai suhu kerja optimal sebelum menggenjot pedal gas dalam-dalam untuk mengaktifkan turbo. Jangan memainkan pedal gas, karena kemungkinan lubrikan komponen turbo belum sempurna. Sebaliknya, biarkan mesin idle beberapa saat sebelum mesin dimatikan. Bila mesin dimatikan seketika, maka pasokan oli mesin ke turbo otomatis terhenti, sementara turbo masih berputar dengan kecepatan tinggi. Ini bisa menciderai bearing. Pada mesin-mesin dengan teknologi turbo terbaru, ‘ritual’ seperti itu tidak perlu lagi.

-®-

Friday, June 11, 2004

Ide Modif C90

Beberapa saat lalu,kenapa sih blogger ngga bisa sign in ???
kali aja network gw yg kacaow ya....btw.........
gw dapet gambar good buat Honda 90s buat tampilan racing.Aselinya sih Honda cub 50cc
Diambil dari web vintage racingnya http://www.eurospares.com/graphics/cubprix.jpg







Gw masih ngga tahu detilnya , but U kira2 sendiri deh ya........
improve..improve....improve.......

Monday, May 31, 2004

V3 or W ????????????

..uhhuukk..waa....batuk nih....
emang lagi musimnya sih....aappeezzz.....hikss...hikss...
--------------------------------------


Make Mine a Triple: The Feuling W3
http://www.motorcyclecruiser.com/roadtests/w3/


Supersize your V-twin with an extra cylinder. From the October 2000 issue of Motorcycle Cruiser. By Evans Brasfield.

Photography by James Brown (email kingosoul@aol.com)

The story is as old as the internal-combustion engine. Some people are never satisfied with their engine's power output. What follows is a slippery slope of bigger bores, capacious carburetors, obnoxious exhausts, radical valve timing, and demon tweaks. Even when the engine has obviously reached the ragged edge, a few builders will push ahead, testing the boundaries of physics--and common sense--to produce very powerful, very expensive grenades.

Jim Feuling, owner of Feuling R&D in Ventura, California (www.Feuling.com), realized that, while nothing exceeds like cubic inches, the current crop of big-bore kits for Harley-Davidson's V-twins were reaching the upper limits of practical power generation. Feuling decided that, in order to add a new wrinkle to the displacement wars, he wanted to build an engine with 50 percent more displacement than Harley's Twin Cam 88 with the 95-cubic-inch factory upgrade kit installed. The result of Feuling's idea takes the form of the working prototype shown here. Looking strangely familiar yet completely alien, the Feuling W3 may be the shape of things to come for those who fancy power cruisers.




Feuling's creation is at its core both incredibly simple and maddeningly complicated. Simply put, why not just graft an additional cylinder onto Harley's robust Twin Cam design? The result would be the desired 50 percent increase in displacement while utilizing parts that are widely available from either H-D or the aftermarket. The complicated part would be, well, actually acting on the idea. This stumbling block, however, wasn't a problem for Feuling.
Get hard on the gas and the W3 delivers enough power to the drive belt to twist the modified Dyna frame. The Progressive Suspension handles the bump absorption duties well. The Dunlop K591 just doesn't offer enough grip to keep the rear tire from spinning up during high-rpm shifts in the lower gears.

Feuling holds more than 100 patents in the automotive industry, with R&D contracts with companies such as Cheverolet, Oldsmobile, Ford, Chrysler, Nissan, John Deere, and Harley-Davidson. He developed four-valve heads for Harley-Davidsons and later sold the rights to Ultra Cycles. He also designed an engine for American Honda's high-mileage streamliner that delivered a whopping 500 mpg at 55 mph. He holds several land speed records, including one for a motorcycle streamliner at 333.847 mph set on the Bonneville Salt Flats on October 20th, 1999. Feuling R&D's 28,000-square-foot facility is chock full of CAD/CAM/CAE machinery, making the company one of the few private facilities in the world that can design, test, and build entire vehicles (including the engine and drivetrain) under one roof. The W3 engine project initially began in conjunction with Harley-Davidson, but as the design reached the end of the initial stages, Harley opted out. With the withdrawal of Harley-Davidson, Feuling went back to the drawing board. The original design had been structured so that H-D would need to add just six new part numbers to its inventory. When Harley opted out, that concern was scrapped in favor of a design that used only parts available in the aftermarket plus a few application-specific items that could be manufactured by Feuling.

The working prototype W3 engine we rode is, when viewed in broad strokes, essentially the same as the version scheduled to be sold early next year. Between the time that the bike was shot and the time we went to press, the displacement jumped from 142 cubic inches (2327cc) to 150ci (2458cc) as a result of the bore and stroke changing from 4.0 inch (101.6 mm) bore and 3.875 inch (98.4 mm) stroke to a perfectly square 4.0 inches by 4.0 inches. Taking inspiration from radial aircraft engines, a central, master connecting rod with two slave rods, one on each side of the central rod, direct the 4.0-inch slugs through the cylinders. Feuling tells us that the design has already been tested in a 185-cubic-inch (3032cc) form and a 245-cubic-inch (4015cc!) drag racing kit may also be built.


A trio of Dellorto 40mm flat-slide carbs complete with velocity stacks feed the hungry cylinders. However, the W3 doesn't just count on three big jugs for its power. Several other Feuling innovations make their way into the mix. Feuling-designed cams operate pushrods for the two-valve patented "Max Flow" heads and valves to speed the combustibles into and out of the arena. Staggered triple AR (Anti-Reversionary) exhausts minimize the backwards flowing pulses that disrupt the movement of gasses out of the cylinder. Three Feuling-designed CVX mufflers allow maximum flow through while keeping the noise and backpressure to a minimum. How does a claimed 150 horsepower at 5000 rpm and 195 foot-pounds at 3000 rpm sound to you? The engine is so mildly built that it can even run on 87-octane gas. The aftermarket helps the W3 put the power to the pavement. A Barnett "Clutchzilla" transfers the horsepower to a Jim's five-speed transmission.


A modified Dyna frame wraps around the big engine. The front of the downtubes were widened, and the fork was raked out to 34 degrees, giving the third cylinder a little breathing room. Famed customizer Jesse James of West Coast Choppers (www.westcoastchoppers.com) created fenders and a gas tank worthy of gracing such a unique machine. The almost invisible ghost-flame paint scheme comes courtesy of Ultra. An inverted Storz Ceriani fork (www.storzperf.com) adds to the aggressive stance of the chassis. Progressive Suspension shocks keep the back end in line. The rolling gear features a 19-inch Performance Machine Trespasser front wheel and a matching 16-inch rear. The dual four-piston PM calipers offer tremendous stopping power, while Dunlop K591 tires provide the adequate stickiness.

Thumbing the starter button brings the beast to life, and the first impression is that of the exhaust note and cadence. You won't hear the H-D potato-potato from this bike. Instead, the engine has a distinct Ducatiesque sound (due to the 90-degree separation between the front and rear cylinders, no doubt) with Harley overtones. Open the throttle and the intake honk of the trio of Dellorto carbs can be heard along with the throaty, yet not too loud exhaust. The stout pull on the clutch lever is only surpassed by the strength required to turn the throttle. In an effort to lessen the throttle effort a full-turn throttle was mounted, making it difficult to roll on the throttle past half-way without choking up on it drag racer style.


Perhaps the long throw of the throttle is a good thing since cranking it wide open in second gear caused the Dyna frame that we rode to flex noticeably under the strain of the 150 horsies. According to Feuling, the next generation prototype will mount rigidly to an FXR frame, eliminating this issue. Since the W3 engine runs eerily smooth at cruising speeds, swapping the Dyna's vibration damping for solid mounts shouldn't present a problem. Unlike many of the ultra-big bore twins we've ridden, the W3 works well in the lower rpm range with none of the surging and drivetrain snatching we've experienced on some aftermarket engines. The engine felt comfortable, even docile at sedate speeds. However, acceleration at any more than half-throttle makes short work of any straight sections of road. Fortunately, the big Performance Machine brakes scrub off speed effectively, giving us an excuse to rap on the throttle once again. W3 owners will, however, want to pop for some stickier rubber in order to harness the bikes acceleration and braking forces; just donÂ’t expect the tires to last too long.

Whether the W3 engine configuration is the shape of cruisers to come remains to be seen, but we're certain more than a few twisted enthusiasts will pony up the $20,000 for Feuling's "Warlock" engine and frame kit when it's available. If you can't wait, build your own. Feuling's estimates his expenses for developing this first streetable prototype are mere 2.5 million dollars. We certainly wish Feuling the best and hope we'll get a shot at a full test of the W3 when it's available. A single afternoon in the saddle only whet our appetites.

Editor's note: Jim Feuling passed away in December 2002. The company lives on and still lists the W3 among its products.

SPECIFICATIONS

Price: $20,000 approx.

Type: air-cooled, 3 cylinder 45 degree x 45 degree

Valve arrangement: OHV; 1 intake, 1 exhaust per cylinder, pushrods, hydraulic adjusters

Displacement, bore x stroke: 142 cu. in. (2327 cc), 4.0 in. x 3.75 in. (101.6 mm x 98.4 mm)

Carburetion: 3, 40mm Dellorto flat-slide

Transmission: JimÂ’s 5 speed

Chassis: Modified Harely-Davidson Dyna

Front suspension: Storz Ceriani

Rear suspension: 2, Progressive Suspension dampers, adjustible for preload and rebound damping

Wheels: Performance Machine Trespasser aluminum, 19-inch front, 16-inch rear

Contact: Feuling Motor Company, 2521 Palma Drive Ventura, Ca 93003, (805)650-3406, www.feuling.com

Friday, May 28, 2004

Motor konsep dari www.motorbox.com


HONDA FANTASYX


MALAGUTI CAFE RACER


Renault


too see much more, click me !

Honda PS-250 concept


PS 250


Honda ngeluarin prototype ini sebagai kendaraan serbaguna disegala medan, hanya sayangnya gw ngga mudeng boso itali di web-nya. Jika anda mau membantu dengan menterjemahkannya silahkan post comment anda. gw bakal berterima kasih sekali.


NB:
Surabaya kok banyak banjir ya akhir-akhir ini ????
so cold,so rainy,so wet, ..........

Wednesday, May 26, 2004

Perbandingan Mesin InLine-4 & V Twin


Inline-Four vs. V-Twin





The engine on the left, from an Aprilia Mille, shows how the weight is spread on a V-Twin: compact laterally, but spread out longitudinally. The Suzuki GSX-R1000 motor on the right, however, shows the exact opposite: wide laterally, but compact longitudinally.


There are lots of engine options for motorcyclists: Singles, Twins (in parallel, horizontally opposed and Vee configurations), Triples, inline-Fours and V-Fours, horizontally opposed flat-Sixes, rotaries and even jet turbines! Yet with all these options, the most popular engine types for motorcycles have been, and continue to be, V-Twins and inline-Fours. As the pinnacle of motorcycle technology has arguably swayed in favor of the 1000cc Superbike, let's look at these two engine configurations up close and do a little compare-and-contrast examinations.


V-Twin sportbikes, from the high-dollar Ducati 999S to the low-buck Suzuki SV650S, have been making a strong resurgence in recent times. Excellent midrange performance courtesy of relatively high torque values means easy access to engine power in the hands of the average rider.

Side profile of a typical dohc, inline-Four engine, in this case, the Suzuki GSX-R1000.


But what makes this so? It's not simply displacement, because in this comparison, we're only looking at one-liter engines. Instead, the reason V-Twins have relatively more torque than an inline-Four has nothing to do with what you'd expect, such as the engine's basic layout.


As CW Technical Editor Kevin Cameron explains, "For the most part, this is a function of valve area. The temptation in doing any sports or racing engine is to put into the head the largest valves that will fit. When this is done with a four-cylinder engine (250cc per cylinder in a one-liter Four), the result is more valve area per displacement than with a Twin of the same size (500cc per cylinder in a one-liter V-Twin). The result of this tactic is power concentrated at the top of the rev scale for the four-cylinder, and power concentrated in the middle for the Twin."


Why is that? It all has to do with intake-charge velocity. When the intake valves open, the downward movement of the piston creates a vacuum (unless you're running boost, but that's a story for another day) in the cylinder, drawing a fresh air/fuel mixture into the combustion chamber. Internal-combustion engines are nothing more than glorified air pumps; so because our one-liter inline-Four and V-Twin engines have the same displacement, they therefore flow a similar amount of air per crank revolution. And that means the volume of the incoming charge will be similar in either engine type.

Because the charge volume is determined by displacement, that volume of air and fuel has to squeeze through the comparatively small carb throats/fuel-injection throttle bodies, intake runners, ports and valves of either configuration. Unlike rush-hour traffic, our orderly fuel and air molecules do this by traveling at high velocity. And because velocity increases as the cross-sectional area of a given passage decreases for a given volume, the cylinder heads of an inline-Four engine will have a naturally higher intake velocity than those of a V-Twin.


To take advantage of this fact, the engine designers strive to increase the intake velocity of the V-Twins to help them make more peak horsepower, while they try to decrease the intake velocity of inline-Fours so those engines can make more peak torque. What they end up with are two different engine platforms with very similar intake velocities.


"Every competent engine designer attempts to use the highest intake velocity he can get away with," says Cameron. "In earlier times, sharp port angles and sudden changes of section interfered with flow, so the engineers came to believe that very large ports were necessary. But as better shapes came into being, they found that smaller ports could be made to flow just as much--if not more--air as before. This has been the legacy of the recent 'flowbench' period of port development--that small, well-shaped ports can flow plenty of air and improve torque by raising the average velocity in the port."

We know, however, that Twins and Fours are not equal, and the reason is that there are still limitations that having more open valve area cannot solve. First, as intake velocity is increased, you begin to have a problem with the intake charge reaching supersonic speeds. A shock wave builds inside the intake tract and air begins to "back up" behind the wave. This severely impedes intake velocity and imposes the limit at which an engine can inhale. Additionally, an inline-Four has twice as many power pulses in any given time period than a V-Twin. What's more, Twins have more frictional losses in the valve train, thanks to needing two sets of slightly larger cams, two cam chains, stiffer springs pushing on larger, heavier valves moving through more lift and, of course, all the bearings necessary to support all the extra hardware.

To counteract the fact that a V-Twin only produces half as many power pulses per crank revolution, you could simply make the engine rev higher. But even if you were able to ignore the frictional losses (which increase by the square in relation to cam rotation speed--and remember, you have four cams pushing on the aforementioned bigger valves and hardware), you'd run into an even bigger issue, in fact the biggest issue: piston speed.

V-Twins require more valve gear.Up there, you can see the dual timing-belt arrangement of a Ducati 999.

"What really determines how high an engine can rev is its peak piston acceleration, reached at TDC on every revolution. This is typically something like 7000 gs right now. Above that, there are problems with piston and ring reliability. Peak piston acceleration is directly proportional to stroke length, and to the square of rpm. In Superbike racing's previous 1000cc Twin/750cc four-cylinder formula, this difference worked in favor of the Twins, even though the formula had been carefully set up so that the difference in displacement would be offset by the smaller engine's shorter stroke and ability to rev higher. But in fact, the Fours could not rev as high as that formula assumed, because they reached that maximum piston acceleration sooner than thought."


From an engineering standpoint, torque alone doesn't make an engine configuration viable. That's why packaging has played such a strong role in the success of the V-Twin. Not only are V-Twins narrower, but contrary to popular belief, they offer greater flexibility in fore-aft weight distribution due to their broader polar moment. Inline-Fours, on the other hand, are wider than V-Twins, obviously, but longitudinally shorter. In a front-to-rear plane, at least, that shortness is helpful in achieving the "mass centralization" goals that most sportbike manufacturers currently ascribe to. But the width of inline-Fours means they are generally harder to flick side-to-side than their V-Twin counterparts.


But wait! There's more. By utilizing a shorter stroke, with smaller valves in smaller bores, Fours can rev much higher than Twins can. And because a smaller bore size means a smaller combustion chamber, the mixture is likely to burn more completely because the flame front has a shorter distance to travel; and that, in turn, allows the use of higher compression ratios. All of these factors equate to an engine that produces more peak horsepower than a Twin. No matter what sort of engine format you like, more power pulses per revolution, with more revolutions available over a given time period, equal more power.


Then there's the subjective feeling that V-Twins provide. Producing one large power cycle per crank revolution, and staging those pulses at staggered intervals, not only yields a character that can be felt and heard, it punches all the right feel-good buttons.


Does that mean inline-Fours are better? Absolutely not. As Cameron puts it, "In simple terms, the four-cylinder should slaughter the Twin in terms of power, but when can you use it? For a few seconds at the end of the straights? Meanwhile, the strong midrange of the Twin can allow its rider to get a better jump off most turns, which gives an advantage most of the way down the next straight."


What all this means is that, unless you're involved in a serious racing program, it doesn't really matter what motor layout powers your bike. Whether it's a torquey V-Twin or a high-revving inline-Four, the bottom line is that a rider's emotional preference is, as is often the case, the only real measuring stick that matters.


-- Calvin Kim
http://cycleworld.com/index.cfm?siteaction=OnlineUpdate&id=46

Tuesday, May 25, 2004

Trike Full Utility Vehicle

This trike is 'bajaj' in Indonesia is transportation use since 70-80' era( import from India ). But I found a many variation of use this vehicle. Who knows ??? this vehicle has a much function like this :



550ML model of lambro

Ambulance Function

Passenger Model of India

Modern model (Vikram India's)

Beginning model

Truck Fire

450cc Model


See more by click this !!

Kawasaki ZZR "cool" Concept




Kawak ZZR Smoothness
====================
Artikel ini gw ambil dari http://www.gizmo.com.au/public/News/news.asp?articleid=2251
Dengan terjemahan bebas sbb :
Motor ini mempunyai kelebihan pada semua fungsi yg dapat 'diatur'.Motor ini dapat menyesuaikan diri pada kecepatan rendah maupun tinggi. Contoh kecil :fairing dan screen berubah menurut posisi low/high/full sport maupun menurut kecepatan saat berlari.Pada sektor mesin ada teknologi 'cone-shaped','rim-mounted disk brakes' yg memaksimumkan pendinginan. juga'centrally-mounted fule tank' sehingga tanki bensin-nya plus mesin yg besar bisa memperpendek gaya garvitasi lebih dekat ke tanah.Design muffler pun menjadi satu dengan design bodi.



Hanya sayangnya detil mesin tidak di ungkapkan.


Monday, May 24, 2004

Two Join Carburator

Wahai diriku,what i do now ???
Just kill the night ??? ooppss...i don't know.
but ideas come to me....
how 'if' i put two joint carburator to my KZ200 ????
in standart condition he can run 150km/h with slippy on 'kopling'
.....

http://www.motorplus-online.com/Articles/Printing/V/273/Pictures/8754/8754-W500.jpg
Keterangan : Karburator yg atu di fungsiin lewat handle/tuas lain sebagai turbo dengan salah satu supyer dimatiin/ di buntu.Atau mo milih yg ini nih !!

and here some pict about pretty "mad"MAX with site : http://www.zvmax.com/vmax.htm & http://www.vmaxoutlaw.com/main.html !!!


Sunday, May 23, 2004

2in1 : motorcycle and automobile

Di Minggu pagi ini, uhf....banyak bgt nih gawe, untung aja gw cuman maen ke kantor....hehhe...legaa dehh...
Something interest today's :




A most attractive and possibly perfect compromise between motorcycle and automobile was recently announced. Check it out for yourself at: www.carver.nl

Here is some picture :

Saturday, May 22, 2004

Bikin Gerinda make mesin JAHIT ..!!

Kereatip juga nih org, gw kopi ya artikelnya <> plus gambarnya juga nih !!!!


Bubut Kem Pakai Mesin Jahit
============================
Bubut benjolan kem kerap bermasalah. “Dikikir manual pasti enggak rata dan benjol-benjol tidak sempurna,” tegas Chandra alias Chiank dari Bandung Motor, di Jl. Ahmad Yani, No. 292, Garut, Jawa barat. Ya, brother satu ini mikir nggak habis-habis cara ngebubut kem secara praktis dan benar.

Lama riset, Chiank dapat ide. “Kumaha kalau minta bantuan dinamo mesin jahit?” katanya merenung. E’eh, dia ngaku dapat ide saat di WC, wah... ngapaian Koh?

Yuk, langsung lihat konstruksi bikinannya. Awalnya membuat tatakan alias jig untuk dudukan noken as. Tentu, mesti statis dan lurus.

Beres begitu, ia nempatin dinamo kekuatan 110 volt sebagi sumber tenaga pemutar gerinda mini di mesin jahit. “Di toko, dinamo begini paling seharga Rp 25 ribu,” kata Chiank. Mirip cara kerja para penjahit, putaran gerinda itu dikendalikan sang tuner lewat kaki.

“Tinggal gas... zzt..zzzt... gerinda muter, menekan noken as di jig yang ikutan muter seiring tekanan gerinda,” ulasnya sambil praktik. Makin halus gerinda berputar, makin presisi pula hasilnya. Begitu juga sebaliknya.

Untuk menekankan gerinda pada pantat noken as, Chiank menghubungkan dinamo dengan alat ukur microton yang bisa diatur maju-mundur. Microton alat pengukur yang menempel di mesin bubut. Pengukurannya diputar tangan, sehingga posisi benda yang dibubut maju-mundur mendekat, atau menjauh dari pisau bubut.

“Akurasi microton cukup laik. Perhitungannya, 10 putaran gerinda menggerus pantat kem 0,5 mm. Berarti perlu 20 putaran untuk menebas 1 mm pantat kem. Jika nggak ada microton, bisa memakai mikrometer dengan cara yang sama,” ulasnya.

Menurut Chiank, alat temuannya lebih sip ketimbang gerinda manual. Dibangunnya jig yang ajeg menjamin dudukan noken as tetap stabil. Saat gerinda menekan dan berputar konstan, kubah noken as akan terbentuk sendiri. “Saat berputar, berapa mm pantat kegerus bisa diketahui dari jumlah putaran.”

Supaya makin yakin, kem yang sudah dibubut diperhalus sama mata bor korek, lantas diukur ulang dengan sigmat.

Reporter : Isfandiary Mahbub D.
Fotografer : M. David Srihanoko

How fuel engines work ?? < gimana cara kerja mesin bakar ? >

Buaahhh......pagi yg hot di surabaya !!!
I don't know why, last night is so rainy ... but this morning...
too clearly......right ???
------------------------------------------------------------------
Oh,iya. saat gw buka buku2 catetan yg lama alias lawas.... i found this...suatu web ttg banyak model mesin yg pernah ada dan unjuk kerjanya. Dari yg biasa, sampai yg paling aneh. Just click at http://www.keveney.com.
contoh kecil di mesin 4 tak ciptaanya mas Otto nih ---->

Friday, May 21, 2004

V8 motorcycle ???? The Big on Heart and madness ?????

Saat kukunjungi site http://www.neobike.net, ada satu judul yg sangat interest, yaitu sepeda motor dengan kongiurasdi mesin V8, gila kali ya ???? seberapa hebat sih ???
Situs lengkapnya sih ada di http://www.richmondlabs.com/Automotive/RichmondV8/V8Registry.html
Ulasan : sebuah situs yg berisi banyak kumpulan pembuat spd motor V8 dengan detail dan asal mesin-nya <>
Just look ...... U gonna be full impression...ini nih contonya handmade tapi fabrique looking .... factory model....

Ini nih yg nggilani, but its so creative ....

Ini bukan mesin V8 sih, berapa ya ??? susah juga ngitungnya !!

My First Blog

Hi....
I Think this gonnabe nice .......
i'm creating a much motorcycle design .....
i'm collecting motorcycle information.....
and so much gone , time by time......
and this blog would be my solution...........
see me ...........